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Brake squeal is mostly considered as a comfort problem only but there are cases in

which self-excited vibrations of the brake system not only cause an audible noise but

also result in safety-relevant failures of the system. In particular this can occur if

lightweight design rims having very low damping are used. Considering the special

vibrations of brake systems is presented. It is shown that most of the knowledge

emanated from investigations of the comfort problem can be used to understand and

avoid safety-relevant failures of the brake system.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Brake squeal is one of the main issues regarding noise, vibration and harshness (NVH) in the development of modern
passenger cars. It has become widely accepted by engineers and researches working in the field that squeal is due to
friction-induced, self-excited vibrations of the brake system. The noise-free configuration of the brake system loses its
stability and the system then starts oscillating with audible frequencies in a limit cycle, characterized by vibrational
amplitudes of several micrometers. A broad overview of brake squeal is given in [1] and a more general review of friction-
induced vibrations can be found in [2–4].

There are two common explanations of the self-excitation mechanism. The first one is based on a coefficient of friction
decreasing with increasing relative velocity. In this case, the self-excitation can be explained with single-degree-of-
freedom models (cf. [3]). However, such a dependence of the friction coefficient does not necessarily occur in a brake
system tending to squeal. The second explanation is based on non-conservative forces in the frictional contact. In this case,
self-excitation may occur even if the coefficient of friction increases with increasing relative velocity [5]. The
corresponding mathematical mechanical models need to have at least two degrees of freedom (see e.g. [6,7]).
An overview of minimal models explaining the onset of disk brake squeal is given in [8].

In the context of passenger cars, brake squeal is considered as a comfort problem only, i.e. the noise generated by
the brake system does not interfere with its function but is detrimental to the passenger’s comfort and lowers the
subjective quality of the vehicle. This is quite evident due to the small vibrational amplitudes. However, there are
examples in connection with lightweight design rims, in which squeal, i.e. a self-excited vibration of the brake system, may
cause safety-relevant failures of the vehicle. A very drastic incident is the failure of spokes of wheels with large diameter,
like custom wheels for cars, bicycles and motorcycles due to hub vibrations caused by brake squeal. Similar symptoms of
fatigue can be observed on other vehicles with lightweight design rims featuring low damping. To the
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best of the author’s knowledge nothing is reported on safety-relevant vibrations excited by squeal in the scientific
literature.

The present note is devoted to the mathematical mechanical modeling of brake squeal of vehicles with rims of
lightweight design. Considering the special conditions related to lightweight design rims, the minimal model for disk brake
squeal presented in [8] is modified and extended. In doing so, a possible explanation of large amplitude vibrations of
the hub of lightweight design rims caused by friction-induced vibrations of the brake system is given. Even though the
investigation already gives an indication how a safety-relevant failure of the system might be avoided, the present note
should be considered as a starting point for further analyses.
2. A minimal model for brake squeal of vehicles with lightweight design rims

For the comfort problem of brake squeal a two-degree-of-freedom model was published in [8]. This model consists of a
rigid wobbling disk in frictional contact with idealized brake pads and captures the salient features of a disk brake in a
rather obvious way. In [9] the rigid wobbling disk was replaced by a rotating Kirchhoff plate. Furthermore, in [10] in- and
out-of-plane vibrations of a rotating plate are considered in the context of squeal. All these investigations showed new
features related to their specific extension of the model but also confirmed that the basic excitation mechanism is captured
by the rigid wobbling disk.

An identical feature of all models is the assumption of a constant speed of rotation of the disk or plate. This is based on
the fact that the speed of the vehicle can be considered as constant and the rigid rim yields a constant speed of rotation of
the brake disk. In the context of lightweight design rims this assumption should be questioned, since the connection
between the hub and the outer rim is rather soft. Moreover the safety-relevant failures and possible fatigue are related to
large rotational displacements between the hub and the outer rim. A first minimal model for brake squeal of vehicles with
lightweight design rims thus should contain the excitation mechanism of [8] and also allow for the flexible connection
between the hub and the outer rim.

The model depicted in Fig. 1 consists of an elastically hinged (stiffness kD) rigid wobbling disk (thickness h, central
moments of inertia Y,F) which represents the actual flexible brake disk (cf. [8]). The disk is in frictional
contact (friction coefficient m) with idealized brake pads (mass mP 1,2). Each brake pad is elastically supported by two
springs (stiffnesses k2, k3). The springs with stiffness k3 are prestressed with the force N0 guaranteeing contact
between the disk and the pads. The system is driven through a visco-elastic coupling (stiffness kH, damping dH,
the shaft in Fig. 1) representing the soft connection between the hub and the outer rim. The (constraint) torque MB,
originating from the contact force between tire and road, ensures a constant speed of rotation OR of the outer
rim. This corresponds approximately to a constant speed of vehicle provided that there is no translatory displacement
of the hub with respect to the outer rim. By this assumption the dynamics of the tire and the tire–road contact are
neglected.

The position of the wobbling disk (body-fixed coordinate system di) with respect to the inertial coordinate system ni is
described by the three Cardan angles q1, q2, q3. The brake pads are allowed to move in the n22n3 plane only. Their
displacements (relative to the equilibrium configuration) are given by q4 and q5, respectively (cf. Fig. 2). The relative twist
angle of the visco-elastic coupling, measured from the equilibrium configuration, is denoted by qH.
Fig. 1. Elastically supported (stiffness kD) wobbling disk in frictional contact with idealized brake pads (mass mP 1,2) and visco-elastically connected

(stiffness kH, damping dH, relative twist angle qH) to the outer rim rotating at constant speed OR.
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Fig. 2. Side and top of the model shown in Fig. 1 depicting the in-plane displacements the idealized brake pads.

Fig. 3. Labeling of the contact points and forces acting between the disk and pad 1.

D. Hochlenert et al. / Journal of Sound and Vibration 329 (2010) 3867–3872 3869
2.1. Kinematics

Fig. 3 shows the labeling of the contact points. The position vector from the origin to the tip of the brake pad 1
(point P1) is

pO=P1 ¼�ðrþq4Þn2þ x1�
h

2

� �
n3 (1)

and for the corresponding contact point C1 on the surface of the disk

pO=C1 ¼ d11d1þd12d2�
h

2
d3 (2)

holds, whereas x1 is the displacement of the spring k3 and d11, d12 are measure numbers to be determined. Since P1 and C1

are in contact,

pO=P1 ¼ pO=C1 (3)

yields a system of three linear equations of the unknowns x1, d11, d12. The sequence of rotations described by the Cardan
angles q1, q2, q3 and the intermediate coordinate systems ai and bi lead to the angular velocity

NxD ¼ _q1n1þ _q2a2þ _q3b3 (4)

of the disk with respect to the inertial coordinate system. Therefore, the velocity of C1 in the inertial coordinate system is
given by

NvC1 ¼ NxD � pO=C1 : (5)
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The velocity and acceleration of P1 follows from

NvP1 ¼

Nd

dt
pO=P1 (6)

and

NaP1 ¼

Nd2

dt2
pO=P1 , (7)

respectively, i.e. the time derivative of the position vector in the inertial coordinate system. For the calculation of the
friction force, the direction of relative velocity of the contact points is needed; it is given by the unit vector

r1 ¼
NvC1�NvP1

jNvC1�NvP1 j
(8)

in the d12d2 plane. Similar relations can be formulated for pad 2. The outer rim rotates at the constant speed of rotation
OR, such that the constraint

NxD � n3 ¼ORþ _qH (9)

holds. The corresponding constraint torque is MBn3. It is assumed that OR is sufficiently large to ensure a non-vanishing
relative velocity between the pads and the disk, such that the denominator in (8) is always positive. This assumption holds
for squeal typical configurations (see [11,9]). As a consequence, stick-slip phenomena can be excluded in modeling of brake
squeal.
2.2. Contact forces

Due to the frictional contact, the forces between the pads and the disk act in normal direction and opposed to the
relative velocity of the contact points. The normal force acting on pad 1 (on point P1) is

N1 ¼�N1d3: (10)

Assuming Coulomb’s law of friction and using the direction of the relative velocity (8), the friction force acting on P1 can be
written as

R1 ¼ mN1r1: (11)

The magnitude of the normal force follows from Newton’s law formulated for pad 1

mP
P1 aN ¼N1þR1þðN0�k3x1Þn3þk2q4n2 (12)

projected on the n3- direction. Again, analogous considerations yield the contact forces between pad 2 and the disk.
2.3. Equations of motion

The equations of motion of the system follow from the balance of angular momentum for the disk and Newton’s law
formulated for each brake pad. The latter was already formulated in (12) for pad 1. To obtain a scalar equation, (12) needs
to be projected in a direction non-orthogonal to n2. This applies analogously to pad 2. The balance of angular momentum
for the disk with respect to the origin reads

Nd

dt
ðHD=O

� NxD Þ ¼MD=O, (13)

where

HD=O
¼Yd1 � d1þYd2 � d2þFd3 � d3 (14)

is the central inertia tensor of the disk with respect to the origin and

MD=O
¼�kDq1n1�kDq2a1�ðkHqHþdH _qH�MBÞn3�pO=C1 � ðN1þR1Þ�pO=C2 � ðN2þR2Þ (15)

is the torque acting on the disk with respect to the origin. The constraint (9) can be used to eliminate _q3 from the equations
of motion yielding the necessary constraint torque MB, which can be interpreted as the braking torque of the system.
In terms of independent generalized velocities, the resulting system has five degrees of freedom.

The nonlinear equations of motion are very lengthy and can be calculated by the aid of an appropriate multi-body
software. The present analysis was performed using the commercial software Autolev, which is described in [12].
Autolev calculates the equations of motion in analytical form and therefore allows for an analytical linearization as well.
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The linearized equations of motion can be written in the form

MS 0

0 F

� � €qS

€qH

" #
þ

DSþGS 0

0 dH

" #
_qS

_qH

" #
þ

KSþNS 0

KSH kH

" #
qS

qH

" #
¼

0

0

� �
, (16)

where

qS ¼ ½q1 q2 q4 q5�
T (17)

contains all generalized coordinates of the system except the relative twist angle qH of the visco-elastic coupling. The sub-
matrices in (16) read

MS ¼

YþðmP1þmP2Þr
2 0 0 0

�
1

2
mðmP1þmP2Þhr Y 0 0

0 0 mP1 0

0 0 0 mP2

2
666664

3
777775,

DSþGS ¼

mN0h2

2ORr
ORF �

mN0h

2ORr

mN0h

2ORr

�ORF 0 0 0

�
mN0h

2ORr
0

mN0

ORr
0

mN0h

2ORr
0 0

mN0

ORr

2
66666666664

3
77777777775

,

KSþNS ¼

kDþhN0þ2k3r2 mN0h2

2r
�N0 N0

�mrð2N0þhk3Þ kDþð1þm2ÞhN0 0 0

�N0 �
hmN0

2r
k2 0

N0
hmN0

2r
0 k2

2
6666666664

3
7777777775

,

KSH ¼ ½0 0 �mN0 �mN0�:

It should by noted that the linearized system is coupled in a one-sided fashion, i.e. the last row of (16) is coupled with the
rest of the system via KSH , whereas qH has no influence on the rest of the system. This will be discussed in the following
stability analysis.

2.4. Stability analysis

Due to the one-sided coupling, the stability of the system (16), i.e. the stability of the trivial solution of the nonlinear
system, is determined by the subsystem

MS €qSþðDSþGSÞ _qSþðKSþNSÞqS ¼ 0, (18)

which has the same structure as the minimal model proposed in [8]. In fact, for q4 � q5 � 0 and mP 1,2=0 the system (18) is
identical to the one of [8]. Therefore, a detailed stability analysis of (18) with respect to the system’s parameters is not
repeated here. However, it should be emphasized that (18) has a pair of eigenvalues with positive real part for realistic
parameters and thus shows self-excited vibrations, which are interpreted as the onset of squeal. In this case, the non-
decaying part of the solution of (18) can be written as

qSðtÞ ¼ q̂SedStsinðoStþcSÞ, (19)

where lS ¼ dS7 ioS is the complex conjugated pair of eigenvalues having a positive real part (dS40) and q̂S,cS are
constants to be calculated from the initial conditions. In the case of brake squeal, oS is approximately the frequency of
squeal and the exponentially growing amplitudes are limited by nonlinear effects resulting in a limit cycle with an
amplitude of several micrometers [13].

The focus of the present analysis is on the influence of the self-excited vibrations on qH, that is the twist of the hub–rim
system. As mentioned in the Introduction, safety-relevant failures caused by squeal phenomena may arise in the context of
lightweight design rims. These failures are directly related to the twist of the hub in the outer rim. Considering the last row
of (16) for qSðtÞ given in (19) yields

F €qHþdH _qHþkHqH ¼ f̂ edStsinðoStþaSÞ, (20)



ARTICLE IN PRESS

D. Hochlenert et al. / Journal of Sound and Vibration 329 (2010) 3867–38723872
with f̂ ¼�KSHq̂S. A particular solution of (20) is

qHðtÞ ¼ CHedStsinðoStþaS�gHÞ, (21)

where the constants CH , gH are given by

CH ¼ jHj, gH ¼ argðHÞ, H¼
f̂ =F

2ðioSþdSÞðdSþdHÞ�d
2
Sþðo2

H�o2
S Þ

(22)

and o2
H ¼ kH=F and 2dH ¼ dH=F are the eigenfrequency and damping ratio of the hub–rim system. Typically the hub–rim

system has a very low damping such that, if the frequency of squeal is close to eigenfrequency of the hub-rim system
(oS �oH), the constant CH is very large. Therefore, due to resonance effects, the magnitude of the twist angle qH will
become very large even if the limit cycle corresponding to q̂S has an amplitude in the micrometer range only. The actual
amplitudes of the resulting limit cycle oscillations are determined by nonlinearities of the system. The nonlinear equations
of motion are of course coupled in a two-sided fashion but considering the response of the linearized system as a
generating solution of the nonlinear system, the amplitude of the twist angle qH will be much larger than the magnitude of
vibrations of the brake system. To the author’s knowledge, safety-relevant failures indeed arose in systems where the
resonance condition oS �oH was met and the issue was solved by a modification of the rim, changing oH in order to keep
the oscillations of the hub–rim system as small as possible. Further details on the practical problem are omitted due to
confidentiality.

3. Conclusions and outlook

Based on a minimal model it was shown how safety-relevant vibrations can be induced by brake squeal. Due to
resonance effects, the amplitudes of the safety-relevant vibrations are orders of magnitudes larger than the amplitudes of
noise-emitting vibrations of the brake system. Such resonance effects are likely to occur in the context of lightweight
design rims featuring a soft and lowly damped connection between the hub and the outer rim. Since the present minimal
model is based on the generally accepted excitation mechanism of brake squeal, most of the knowledge emanated from
investigations of the comfort problem can be directly applied. Furthermore, the one-sided fashion of the coupling between
the brake and the hub–rim system is maintained as long as additional parts are connected to boundaries of present
minimal model.

The analysis showed that avoiding the resonance effect is a remedy for safety-relevant problems. However, the minimal
model highlights the excitation mechanism in a synthetic fashion only and should be considered as a starting point for
further analyses or as a benchmark problem for commonly used commercial multi-body or finite element codes.
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